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ral prosthetic interfaces use neural activity related to the planning and
perimovement epochs of arm reaching to afford brain-directed control
of external devices. Previous research has primarily centered on
accurately decoding movement intention from either plan or peri-
movement activity, but has assumed that temporal boundaries be-
tween these epochs are known to the decoding system. In this work,
we develop a technique to automatically differentiate between base-
line, plan, and perimovement epochs of neural activity. Specifically,
we use a generative model of neural activity to capture how neural
activity varies between these three epochs. Our approach is based on
a hidden Markov model (HMM), in which the latent variable (state)
corresponds to the epoch of neural activity, coupled with a state-
dependent Poisson firing model. Using an HMM, we demonstrate that
the time of transition from baseline to plan epochs, a transition in
neural activity that is not accompanied by any external behavior
changes, can be detected using a threshold on the a posteriori HMM
state probabilities. Following detection of the plan epoch, we show
that the intended target of a center-out movement can be detected
about as accurately as that by a maximum-likelihood estimator using
a window of known plan activity. In addition, we demonstrate that our
HMM can detect transitions in neural activity corresponding to targets
not found in training data. Thus the HMM technique for automatically
detecting transitions between epochs of neural activity enables pros-
thetic interfaces that can operate autonomously.

I N T R O D U C T I O N

An emerging class of neural prosthesis seeks to help patients
with spinal cord injury or neurodegenerative disease that sig-
nificantly impairs their capacity for motor control (Donoghue
2002; Fetz 1999; Nicolelis 2001; Scott 2006). These systems
would restore control of paralyzed limbs or prosthetic devices
(referred to as brain–machine interfaces or motor prostheses)
or facilitate efficient communication with other people or
computers (referred to as brain–computer interfaces or com-
munication prostheses). To be useful, these neural prostheses
must be able to accurately decode the information represented
in ensemble spike activity recorded using chronically im-
planted microelectrode arrays (Kipke et al. 2003; Nicolelis
et al. 2003; Suner et al. 2005). Recently, a series of prototype
implementations have demonstrated that monkeys and humans
can achieve some level of real-time control over motor (Car-

mena et al. 2003; Hochberg et al. 2006; Kennedy and Bakay
1998; Kennedy et al. 2000; Serruya et al. 2002; Taylor et al.
2002) or communication (Musallam et al. 2004; Santhanam
et al. 2006) prostheses. Despite these exciting advances, one
aspect of a functional autonomous neural prosthesis has been
neglected. For best performance these systems have required
human intervention to notify the decoding algorithm when it is
appropriate to decode and when it is not. This work addresses
this problem and presents a principled approach toward the
design of a fully autonomous neural prosthesis.

Human intervention has been required in current neural
prosthesis as a result of the fact that motor cortical activity
patterns change depending on an animal’s cognitive state.
During the execution of goal-directed movements, neurons in
arm-related motor cortical areas typically display activity
whose firing rate is strongly modulated by the direction and
speed of the hand (Georgopoulos et al. 1982). However,
immediately prior to the initiation of movement, the firing rate
of these same neurons is often modulated by parameters related
to the preparation of the impending movement such as target
location (Crammond and Kalaska 2000) and reach speed
(Churchland et al. 2006a). Thus neural activity accompanying
an arm movement transitions through three distinct phases:
baseline activity prior to movement intent, preparatory activity
prior to movement execution, and perimovement activity ac-
companying actual movement execution. As seen in the exam-
ple ensemble spike train in Fig. 1, transitions between phases
of activity—particularly the baseline and preparatory epochs—
are visible but quite indistinct. Thus planned limb movements
share a common characteristic with attentional shifts and im-
pending decisions: they are marked by transitions that are
apparent in recorded ensemble activity well before externally
observable correlates. Historically, neural prostheses have been
designed to decode activity during one of these phases and are
simply turned off by the experimenter during the others.

When transitions between these epochs of activity are not
detected, decoder performance suffers. Specifically, nearly all
current neural prosthetic systems depend on knowing when “plan”
activity is present, when “movement” activity is present, or both.
Systems converting movement activity into moment-by-moment
prosthetic movement commands literally turn the system on and
then back off several minutes later, with the intervening period
assumed to be filled with movement activity (Carmena et al. 2003;
Hochberg et al. 2006; Taylor et al. 2002). Equally problematic,
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systems converting plan activity into estimates of where a com-
puter cursor or arm should end up literally use knowledge of when
a visual target was turned on to determine when to intercept plan
activity (Musallam et al. 2004; Santhanam et al. 2006).

A handful of recent reports have considered the specific issues
of detecting the epoch of neural activity (Hudson and Burdick
2007) in the absence of training data and decoding trajectories
when the neural activity is modeled using state-dependent firing
rates (Srinivasan et al. 2007; Wu et al. 2004). In contrast, using the
HMM approach taken in this work, we are able to use training
data to achieve a high level of performance and explicitly estimate
the target of movement. We recently reported (N Achtman, A
afshar, G Santhanam, BM Yu, SI Ryu, and KV Shenoy, unpub-
lished data) the first neural prostheses using plan activity that
operated autonomously, i.e., without requiring the experimenter to
manually isolate the relevant epoch of neural activity. This system
operates in two phases: first, estimating the onset of plan activity
using maximum likelihood (ML) on a sliding or expanding
window of neural activity and a repeated-decision rule and,
second, using a window of the detected plan activity for an ML
target estimator. Compared with Achtman et al. (unpublished
data), the HMM approach simplifies the decoding process and
improves performance.

Our model uses a latent variable to represent the epoch or
“state” of the ensemble activity. In addition, we model the
transition of neural representations through multiple epochs—
specifically, as a Markov process. Neural firing rates are

modeled as a Poisson process whose rate is conditioned on the
latent variable. By starting from this principled generative
model, we are able to calculate the moment-by-moment a
posteriori likelihoods of particular epochs and movement tar-
gets. In this work, we describe the process of design and
parameter learning for a hidden Markov model (HMM) repre-
senting goal-directed movements. We demonstrate that a two-
phase decoder—using the a posteriori likelihood of the HMM
states to first detect the onset of movement planning and then
to calculate the ML target—results in substantial increases in
performance relative to the finite state machine (FSM).

Ensemble spike activity has previously been modeled using
an HMM approach (Danóczy and Hahnloser 2006; Deppisch
et al. 1994; Miller and Rainer 2000; Radons et al. 1994).
Furthermore, the target of an intended movement (Abeles et al.
1995; Seidemann et al. 1996) and the epoch of neural activity
(Hudson and Burdick 2007) have been decoded from prepara-
tory activity using an HMM. In this work, the hidden states of
our model representing movement preparation and execution
can be considered an extension of the concept of “cognitive
states” previously presented, with a supervised rather than
unsupervised process used to learn the correspondence be-
tween state representations and particular epochs of activity.
Furthermore, we demonstrate how physical characteristics—
reach target or trajectory—of goal-directed movements can be
estimated from the inferences of these hidden states. Thus in
addition to an increase in performance compared with the
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FIG. 1. Phases in the timeline of an in-
structed-delay reaching task are reflected in
ensemble neural activity. Ensemble spikes for
an individual trial (H12172004.171) are de-
picted below the timeline of our instructed-
delay task. The tracked positions of the eye and
hand (blue: horizontal; red: vertical) are shown
below, with full range corresponding to �10
cm. Subtle changes in firing rate accompany
the transition from baseline to plan epochs and
plan to movement. A neural prosthesis de-
coding movement intent from ensemble
activity must detect these transitions and
act accordingly.
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FSM, we anticipate that our principled HMM approach may
find application beyond neural prostheses, tracking changes in
other cognitive states.

M E T H O D S

Experiments

We trained two adult male monkeys (Macaca mulata, denoted G
and H) to make center-out reaches in an instructed delay task, as
described in Achtman et al. (unpublished data) and Yu et al. (2007).
All animal protocols were approved by the Stanford University
Institutional Animal Care and Use Committee. The basic flow of the
experimental task is depicted in Fig. 1. Briefly, the monkey sat in a
chair positioned arm’s length from a rear-projection screen in the
frontoparallel plane. To begin a trial, he touched a central target and
fixated his eyes on a crosshair near it. After an initial period of about
500 ms, a reach goal was presented at one of eight possible radial
locations (30, 70, 110, 150, 190, 230, 310, 350°) 10 cm away. After
an instructed delay period between 700 and 1,000 ms, the go cue
(signaled by both the enlargement of the reach goal and the disap-
pearance of the central target) commanded the monkey to reach to the
goal. Mean hand velocity during the period 400 ms before target onset
to 400 ms following was 0.01 m/s (0.01 and 0.02 m/s SD for G and
H, respectively), reflecting primarily a small postural relaxation fol-
lowing central-target acquisition. After a final hold time of about 200
ms at the reach goal, the monkey received a liquid reward. Eye
fixation at the crosshair was enforced throughout the delay period.
Reaction times were enforced to be �80 and �400–600 ms. Occa-
sional trials with shorter 200-ms delay periods encouraged the animal
to concentrate on preparing his reach throughout the delay period.

The position of the hand was measured in three dimensions using
the Polaris infrared optical tracking system (60 Hz, 0.35-mm accu-
racy; Northern Digital, Waterloo, Ontario, Canada). A 96-channel
silicon electrode array (Cyberkinetics, Foxborough, MA) was im-
planted into caudal dorsal premotor cortex adjacent to M1 (right
hemisphere, monkey G; left hemisphere, monkey H). The signals
from each channel were digitized at 30K samples/s, and both single-
and multiunit neural activities were isolated using a combination of
automatic and manual spike-sorting techniques (Yu et al. 2007).

Of the several weeks of useful data collected with each of the two
monkeys, we chose two individual data sets, G20040508 and
H20041217 in which the animals performed many successful trials:
1,768 and 1,624 for monkeys G and H, respectively. Furthermore, we
were able to record the activity of 31 (54) well-isolated neurons and
70 (136) multiunits in monkey G (H). Because this work is not
concerned with the properties of individual cortical neurons, our
analyses combined these data, yielding data sets with 101 and 190
neural units.

Decoding

The center-out instructed delay task depicted in Fig. 1 contains three
distinct epochs of neural activity: baseline prior to target onset; plan
epoch when the upcoming movement is being prepared; and perimove-
ment when the movement is performed. When the time of the target onset
is known to the decoding device, we have previously (Santhanam et al.
2006) demonstrated that an accurate real-time estimate of the intended
target of a movement can be made using ML estimation in concert with a
200-ms window of neural activity beginning 150 ms following target onset.

Both the HMM and FSM decoding schemes use a two-tiered
approach to decode this neural activity—first detecting the epoch of
activity, then, when appropriate, decoding the intended target of
movement. For comparison purposes, we implemented the “fixed
window rule” target estimator FSM presented in Achtman et al.
(unpublished data). First, a 200-ms sliding window of neural activity
was used to generate an ML estimate of the epoch of neural activity.

Target estimation is triggered by the detection of Cplan consecutive
detections of the plan epoch of neural activity. Training data are used
to learn the mean latency of this detection and target-dependent mean
firing rates for the plan window of activity—150 to 350 ms following
target onset. The decoded target is determined by ML comparison of
the estimated plan window with those learned during training. Increas-
ing the Cplan parameter allows the experimenter to trade latency of
decoding for increased accuracy.

The FSM consists of a logical two-step approach to the problem of
estimating the intended target of movement from the plan epoch of
neural activity. However, in detecting the transition from baseline to
plan, the FSM does not rely on an explicitly generative model of
neural activity. In contrast, in our HMM, a trajectory of a latent
variable through one series of states gives rise to the pattern of activity
we observe for a movement to a particular target. A trajectory through
a different series of states would correspond to a movement to a
different target. The HMM constrains the acceptable state transitions
and the time course of the trajectory through state space, facilitating
both parameter estimation and decoding.

In the HMM, epochs of neural activity are explicitly represented by the
value of a latent state variable, st, whose change in time is modeled as a
first-order Markov process. This implies that the probability of transition
from state i to state j at time t � 1, Aij, depends only on the state at time t

Pr �st�1 � j � st � i� � Aij (1)

State changes and neural activity are considered in 10-ms time steps. The
Markov assumption enables the information gleaned from the neural
activity in one 10-ms period to be appropriately combined with informa-
tion from all previous periods of activity in an efficient recursive manner
amenable to real-time processing. We will denote the number of spikes
recorded in a 10-ms window following time t by nt(k) for the kth neuron
in the ensemble. Furthermore, the activity of the ensemble of N neurons
is denoted by the column vector nt � [nt(1) nt(2) . . . nt(N)]T.

In addition to a model of state transitions, an HMM is specified by
the way the latent state variable can be observed. Conditioned on the
state of the system, we modeled spikes as a Poisson process with a
constant firing rate. The conditional probability of observing d spikes
from neuron k is thus

Pr �nt�k� � d � st � i	 � exp���k,i���k,i
d � (2)

where �ki, is the mean firing rate of neuron k when the state of the
underlying process at time t, st, is i.

Notice that the choice of a Poisson model of activity implies the
assumption that, conditioned on being in a particular state, the activity of
each neuron observed will be temporally homogeneous (the same rate
across trials). To account for the obvious dependence of ensemble firing
rates on the intended target of movement, we used a model with separate
states for each target during each directional epoch (one plan and one
perimovement state per target). Furthermore, the firing rates of neurons in
the ensemble are highly variable during the baseline epoch. To account
for this variability, we used five separate states during baseline (similar
performance was observed for three to eight baseline states). Figure 2A
depicts this simple HMM, with each circle representing an HMM state
and single arrows representing allowed state transitions. Corresponding
to each state is a different vector of firing rates. Note that this form of
representation is distinct from a “graphical model,” an alternative graph-
ical format that depicts the probabilistic relationship between latent states
and between latent states and observations.

For the stereotyped center-out movements generated by a trained
subject, the patterns of neural activity are highly similar. As a result it is
possible to model the temporally inhomogeneous patterns of neural
activity accompanying the preparation and execution of movement to a
particular target with a single pair of states. However, to test the impor-
tance of representing temporal variability in neural activity, in addition to
the simple, two-state-per-target HMM, we created a second, extended
HMM. In the extended HMM, plan and perimovement activity for
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movements to a particular target are modeled as a series of connected
states, as depicted in Fig. 2B. For both models, we specified the state
transition matrix A, such that transitions were permitted between all
baseline states, from each baseline state into the first of each target-
dependent state sequence and then in a left-to-right manner between
target-dependent states, as shown by the arrows in Fig. 2.

The a posteriori likelihood (APL) of a state j, at time t, Pr (st �
j � n0:t), is a measure of the probability that the observed neural
activity from time 0 to time t arose from a sequence of states that
concluded in state j at time t. Notice that, although the model prohibits
transitions from states corresponding to one target to states corre-
sponding to another, the APL of states corresponding to different
goals may display large fluctuations, initially suggesting one goal is
most likely, then, after neural activity accumulates, shifting to
strongly indicate a different goal.

The APL can be calculated recursively

Pr �st�1 � j � n0:t�1� 
 Pr �n0:t�1, st�1 � j�

� �
i�1

L

Pr �n0:t, st � i�Aij �
k�1

N

Pr �nt�1�k� � st�1 � j	

Pr �n0, s0 � j� � �j �
k�1

N

Pr �n0�k� � s0 � j	 (initialization) (3)

where L is the total number of states in the HMM and �j � Pr (s0 � j).
The recursive multiplication of many probabilities results in numbers

that quickly converge to zero. Thus when calculating the APL, we
normalize the probability at each time step to guard against numerical
underflow. Details of our specific implementation are given in the
APPENDIX.

The didactic model in Fig. 3 was trained using only 10 neurons and
reaches to only two targets. Figure 3B depicts the activity of these
neurons in an example test trial. Figure 3C depicts the estimated APL
for this trial. In this example, the transitions from baseline to prepa-
ratory to perimovement regimes of activity are quite apparent in the
spikes and, as expected, the estimated state likelihoods track these
transitions quite accurately and closely.

We use the APL for both epoch detection and target estimation. To
determine the current epoch of activity, the APL is combined across
goals. For the plan epoch

Pr (plan epoch � n0:t) �

�
j��

Pr �st � j � n0:t�

�
j�1

L

Pr �st � j � n0:t�

(4)

where � represents all plan states for all target locations. Equiva-
lently, we can find the APL of perimovement states. Then, the time at
which this APL crosses a predetermined threshold is an estimate of
the moment of transition between activity regimes. Shown in Fig. 3C
is a 90% probability threshold and the corresponding moment at
which the transition to preparatory activity is detected. Note that

Baseline

Target 1

…

Preparation Execution

Target N

Baseline

…

…

Target 1

Target N

…

A

B

FIG. 2. We model observed neural activ-
ity as the output of the depicted first-order
hidden Markov process. Circles represent
hidden states (each corresponding to a dif-
ferent vector of neural firing rates) and sin-
gle arrows represent allowed state transi-
tions. A: in our simple hidden Markov model
(HMM), there are 2 states for each reach
goal. The double arrows represent the full
interconnectedness of the baseline states,
and that they are fully connected to the
preparatory states. B: in the extended HMM,
there are multiple states for each reach goal,
but they are connected in a left-to-right man-
ner: transitions occur only from one state to
the next.
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higher threshold values result in fewer false-positive epoch detections
but longer latencies between target onset and epoch detection; an
operational system would choose a threshold value based on user
preferences. We considered using ML simultaneously for both epoch
and target estimation. However, we discovered that during the periods
of transition from one epoch to another, there were sometimes brief
elevations in the APL corresponding to targets other than the one
finally converged on. Thus by combining across targets, we were able
to estimate the moment of epoch transition before the APL of a state
corresponding to a particular target had stabilized.

Following epoch detection, we further use the APL for target
estimation, combining likelihoods of states corresponding to the same
target. For a particular target, xg, we have

Pr �xg � n0:t� �

�
j��

Pr �st � j � n0:t�

�
j�1

L

Pr �st � j � n0:t�

(5)

where � represents the states corresponding to target xg. Our estimate
is then the target that maximizes Pr (xg � n0:t). As depicted in Fig. 3C,
this is typically simply equivalent to the target corresponding to the
ML state. As follows from our description of the initial instability of
the APL corresponding to individual targets, we found that target
estimation could be improved by waiting a fixed period following
epoch detection, integrating additional neural activity into the APL
prior to decoding. This delay results in a further trade-off of latency
and accuracy, which can be optimized per user preference.

The primary contrast between this work and previous applications
of HMMs to neural activity (Abeles et al. 1995; Hudson and Burdick
2007; Seidemann et al. 1996) is in the approach taken to learn the
HMM parameters. Rather than attempting to learn the state-dependent
structure of the neural activity in an unsupervised way, we assumed

the availability of training data with rough epoch boundaries. This
allowed us to learn the parameters of our HMM—the state transition
matrix, the state-conditioned firing rates, and initial state probabili-
ties—using expectation maximization (EM). The EM algorithm is a
general iterative approach for finding the parameters in models like
the HMM. A good tutorial is that of Rabiner (1989); the specific
equations used in this work are given in the APPENDIX. Specifically, we
used a training data set consisting of 50 reaches to each of the eight
targets. Hidden Markov model parameter learning using EM is often
sensitive to the values used in initialization. In the unsupervised
learning case, in which the desired structure of the final model is
highly uncertain, a variety of strategies can be used to decrease this
sensitivity (Abeles et al. 1995; Seidemann et al. 1996) or different
learning approaches can be used (Hudson and Burdick 2007). In our
case, the desired model structure was known and learning was used
primarily to fine-tune parameters.

We created an initial model with the desired characteristics by
specifying an appropriate state transition matrix and initializing state
firing rates to correspond to the mean firing rates in the appropriate
periods (baseline: prior to and immediately after target onset; plan:
following target onset; perimovement: following the go cue). State
transition probabilities from the eight preparatory states were set to
0.9 and 0.1, respectively, for the probability of return and the prob-
ability of transition to the corresponding perimovement state. Peri-
movement states are absorbing (the probability of transition to any
other state is equal to zero). The probabilities of transitions between
the five fully connected baseline states and from each baseline state to
each preparatory state are set to be equal. The initial probabilities of
the preparatory and perimovement states were zero and the initial
probabilities of the five baseline states were equal.

The specific periods of neural activity used to initialize the model
firing rates are specified in Table 1. In the simple HMM, the mean
ensemble firing rates in each period were calculated from the 50
training trials for each target and assigned to the appropriate state. In

TABLE 1. Parameter initialization

State Period Simple HMM Extended HMM

Baseline [tTARGET � 200 ms : tTARGET � 150 ms] 5 consecutive states
Plan [tTARGET � 150 ms : tTARGET � 750 ms] 1 state 10 consecutive states
Perimovement [tVELMAX � 250 ms : tVELMAX � 350 ms] 1 state 25 consecutive states
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FIG. 3. A: simple 5-state reaching-movement HMM. The neural activity transitions from a baseline state to one of 2 possible planning states. After some
period of planning, the activity transitions to a perimovement state. During any small period of time, the actual state itself is not directly observed. Rather,
individual neurons change their firing rates depending on the state. B: an example of the neural activity for a rightward movement. C: on an individual trial, the
a posteriori likelihood of each of the states given all the data received up to the current time can be calculated. The result is a time series of state likelihoods
as shown. By evaluating when and which state likelihoods cross a threshold, we can estimate the state of the neural activity (e.g., baseline, planning, or moving)
and the target of the movement. The arrow depicts the estimated time of the beginning of the planning regime for the threshold value depicted.
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the extended HMM, the plan and perimovement periods were subdi-
vided respectively into 10 and 25 equally sized windows and the
average activity in each window was used for state initialization. The
baseline activity period was split into five windows and the mean
firing rates over all training trials were assigned to the five baseline
states. Note that performance is not sensitive to the exact number of
states chosen for the various epochs.

For limited training data, the large number of states in the extended
HMM render it vulnerable to both misfitting and overfitting. To ensure
that the model we desired was the one actually learned, we generated
appropriate initial conditions by first running EM for each target
separately—on only the baseline states and the states corresponding
to that particular target. Then, these submodels were combined and
EM was run on the complete extended HMM, with a convergence
threshold chosen to avoid overfitting.

Real-time implementation

The causal design of our simple and extended HMM algorithms
makes them easily amenable to a recursive real-time implementation.
However, it is unclear how much computational delay the real-time
implementation would introduce in addition to the latency caused by
the algorithm itself. This is delay in association with epoch and target
estimation as well as the length of time required to render the
appropriate icon to the monkey (termed Tdec�rend in Santhanam et al.
2006).

To show that it is possible to create an implementation that does not
result in additional delay that would impede usability, we extended
our experimental platform to allow for real-time epoch and target
estimation. This required performing real-time spike sorting and
neural data collection as described in Santhanam et al. (2006). In
addition, two other computers were used: one to extract the relevant
window of neural activity at submillisecond resolution (30-kHz sam-
pling with Pentium 4, 2.8 GHz), another to calculate all of the relevant
state probabilities and report a decoded target when appropriate
(AMD Athlon dual-core, 2.2 GHz). All of the machines that handled
raw neural data from the amplifier were running real-time Linux,
which allowed for the real-time hardware control necessary for the
precise timing required; the machines that dealt with stimuli presen-
tation were running Windows and DOS. Our implementation fetched
50-ms blocks of neural data at a time to allow for latencies involved
in packaging the spiking data into Matlab structures. Spikes were
binned every 10 ms as described earlier.

Our real-time system was tested on neural data while monkey H
was performing arm movements. The extended HMM was used with
10 planning states and 45 movement states for each target and 5
baseline states. The probability of the plan epoch was defined as the
sum of being in the latter 9 of 10 plan states. The implementation
latency was therefore the difference in time between when the prob-
ability of the plan epoch exceeded threshold and the time that the
decoded icon was displayed to the monkey. This was measured to be
about 30–40 ms, which is about the same as that reported in
Santhanam et al. (2006) for our fixed-paced decoder. Thus even
though the extended HMM requires more computations than simple
maximum likelihood, the computational difference is not great enough
to result in a noticeable delay when implemented in real time.

R E S U L T S

The task of decoding movement intent from preparatory
neural activity for a neural prosthesis motivated us to develop
an HMM-based algorithm that could detect the transitions in
ensemble activity between baseline, planning, and execution of
movements. Following detection of the plan epoch, the in-
tended target of movement is then decoded. The final perfor-
mance of the neural prosthesis will thus depend on two aspects

of the system: how reliably the epoch of plan activity can be
detected and how accurately the intended target can be decoded
from plan activity.

In the absence of errant HMM behavior, the neural activity
should transition from the baseline to the plan epoch at some
point following the target onset. Thus detection of this transi-
tion is characterized by a latency relative to target onset and
jitter, the trial-to-trial variability in this latency. As described
earlier, larger thresholds result in increased latency. Figure 4A
shows cumulative distributions of the latency for three differ-
ent values of the threshold. However, whereas larger thresholds
on average lead to increasing latency, as shown in Fig. 4B, they
also lead to decreased jitter (defined as the SD of the latency
across the test trials). However, as the threshold gets too close
to one, as shown in the top panel of Fig. 4B, the number of
trials in which the likelihood of the plan epoch never exceeds
threshold increases, and thus the jitter and latency (calculated
excluding trials in which the plan epoch is never detected)
begin to rise precipitously. Given the internal nature of the
transition from baseline to plan epochs, we have no indepen-
dent measure of its variability. On the other hand, we can
directly observe the reaction time of the subject to the go cue
using a hand velocity threshold (0.025 m/s threshold; mean
velocity 100 ms prior to go cue was 0.003 and 0.004 m/s for G
and H, respectively). This variation, shown by the gray line in
Fig. 4B, provides a lower bound to the jitter of the neural
reaction to the go cue and, if epoch transitions follow similar
timelines, a lower bound to the jitter in the transition from
baseline to plan epochs.

Figure 4 depicts that for smaller values of the threshold, it is
more common to misestimate the time of transition-to-plan too
early than too late. We wondered whether this might be a result
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FIG. 4. The HMM detects a transition to the plan epoch with some latency
following the appearance of the target. A: cumulative distributions of the
detection latency for 3 values of the threshold (0.5, solid; 0.9, dashed; and
0.999, dotted). Note how the center of the distribution shifts rightward (later)
with increasing threshold values. Furthermore, low values of threshold result in
a large fraction of premature epoch predictions, seen as nonzero values at zero
latency. B: the mean latency (solid black line) increases with increasing
threshold. The jitter, or SD of the latency, first decreases then increases with
increasing threshold (dashed line). For comparison purposes, the SD of the
subject’s behavioral reaction times to the go cue is shown in gray. Top and
bottom panels present data from monkeys G and H, respectively.
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of modeling the neural firing in the plan epoch with only one
state per target. Thus we implemented an extended HMM
model with 10 states modeling the time course of plan activity.
Figure 5 compares the distribution of epoch detection times
estimated using the extended HMM with those of the simple
HMM. In general, the extra states provided in the extended
HMM resulted in earlier epoch detection. Additionally, how-
ever, the shorter latency was accompanied by a smaller jitter,
as would be expected if the extra states improve our model of
neural activity. In training, the plan states of the extended
HMM were initialized with data 150 ms following target onset.
Figure 5B suggests that the EM algorithm learns to assign
neural activity preceding this moment to the plan states. This
points out a significant advantage of the HMM approach:
accurate knowledge of the specific timing of transitions on a
trial-by-trial basis is not required for model parameter estima-
tion.

For the neural prosthetic decoder application, detection of
the onset of the plan epoch is used to enable a second stage of
decoding—i.e., target estimation. An approximation of the
upper limit of target estimation accuracy (fraction of targets
correctly decoded) is the ML approach, with known epoch
timing presented in Santhanam et al. (2006), using a 200-ms
neural activity window beginning 150 ms following target
onset. Over the test trials, the application of this approach
yielded a mean accuracy of 91% (89%) for monkey G (H).
Recall that the choice of HMM decoder parameters results in a
trade-off of latency and accuracy. The solid line in Fig. 6
compares the accuracy of HMM-based decoding following the
detection of the plan epoch with the latency of detection for
increasing values of the epoch detection threshold. The peak
detection accuracy, 86% (81%), occurs with a mean latency of
292 ms (321 ms). Note that trials in which detection of the plan

epoch occurred �700 ms following target onset are considered
failures, lowering the accuracy and not contributing to the
mean latency. Thus for the HMM, epoch detection results in a
loss of about 5–10% in accuracy relative to known epoch
timing.

We suspected that the likelihood of the plan epoch might
converge faster than the likelihood of the proper target. Thus
we also calculated the ML target at various delays following
the detection of the plan epoch. This allowed the HMM to
accumulate additional neural activity into the state likelihoods
and thus would presumably increase the accuracy of the de-
tected target at the cost of increased latency. The dotted and
dashed lines in Fig. 6 depict decoding accuracy as a function of
latency when an additional 100 or 200 ms of neural activity is
accumulated following the detection of the plan epoch prior to
target decoding. With a lower threshold and an additional 100
ms of neural activity, the HMM can achieve 89% (85%)
accuracy with a latency of 328 ms (332 ms). For comparison,
our previously reported FSM method has one parameter—the
number of consecutive plan epoch detections (Cplan), which
has a similar effect to trade-off latency and accuracy. For Cplan
of 20 (optimized for highest accuracy with latency �350 ms),
the accuracy of the FSM is 84% (83%) with an average latency
of 333 ms (344 ms).

The extended HMM represents the time course of the plan
activity epoch in multiple states. As described earlier, one
result of these extra states is that the plan epoch is actually
often detected earlier than expected. This is primarily because
of predicted early transitions to the first of the plan epoch states
corresponding to one of the intended targets. Not surprisingly,
we found that if we excluded the first plan state from the epoch
detection likelihood, we delayed detection. This is equivalent
to forcing the HMM to ignore the neural activity representing
the early transient response to the target onset. Knowing that
other algorithms showed increased accuracy when neural ac-
tivity �150 ms following target onset was considered, we
expected that target estimation would be more accurate if the
first plan state was excluded from both the epoch detection and
target estimation process. As shown in Fig. 7A, not only is this
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FIG. 5. The extended HMM represents an intended movement to a given
target with several states. The onset of the plan epoch is detected by collapsing
the likelihood across all the appropriate states. A: comparison of the distribu-
tion of epoch detection latency generated by the extended HMM (black lines)
with that of the simple HMM shown in Fig. 4 (gray lines) using the same 3
values of threshold (0.5, solid; 0.9, dashed; 0.999, dotted). B: comparison of
the mean latency (solid lines) and jitter (dashed lines) as a function of
increasing threshold, extended HMM (black lines), and simple HMM (gray
lines). Top and bottom panels present data from monkeys G and H, respec-
tively.
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FIG. 6. Increasing the plan epoch detection threshold leads to both an
increase in the latency of detection relative to target onset and an increase in
the accuracy of the estimated intended target of movement in the simple HMM.
The solid line shows the accuracy as a function of the average latency for
increasing threshold values; 0.9 to 1  10�6 (left) and 0.9 to 1  10�9 (right).
The likelihood of the plan epoch converges faster than the likelihood of the
particular target, thus delaying target estimation until 100 ms (dashed line) or
200 ms (dotted line); following the detection of the plan epoch can further
increase decoding accuracy. With this added delay, HMM-based decoding
approaches the accuracy of maximum likelihood (ML) when the time of target
onset is known to the decoder (depicted as a cross). Left and right panels depict
results for monkeys G and H, respectively.
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the case, but excluding even more of the initial states further
improves decoding accuracy at the cost of increased latency.
Table 2 summarizes the optimized accuracy of the windowed
ML, FSM, simple HMM, and extended HMM decoding algo-
rithms.

Model robustness

We have demonstrated that an HMM can be used to
simultaneously detect the onset of neural activity related to
an intended movement and decode to which of several
targets the user desires to move. However, the HMM pre-
sented earlier required modeling the neural activity to each
possible desired target. We investigated whether a simple
HMM could additionally detect the onset of neural activity
related to movements that were not explicitly modeled. To test
this question, we trained a simple HMM using trials corre-
sponding to reaches to only four of the eight targets in our data
set (70, 150, 230, and 350°). Using this model, we evaluated
whether we could accurately detect the transition to the plan
epoch in the neural activity corresponding to movements to the
other four targets. Figure 8 depicts a cumulative distribution of
the detected transition times, comparing test trials correspond-
ing to trained targets with those corresponding to novel targets.
In general, transitions for novel targets were slightly later than
those for the trained targets, but were still readily detected.
Interestingly, on trials to novel targets, the decoded target is the
target adjacent to the novel one in 99% of trials for both
monkeys. This suggests that the HMM is able to detect simi-

larities in the pattern of activity for similar movements. Thus it
appears that a simple HMM can be useful for detecting tran-
sitions in neural activity, even when the movements involved
differ from those modeled in training.

Perimovement activity

In addition to plan activity, our HMM included states rep-
resenting the neural activity that accompanies the actual exe-
cution of the center-out reaches in our task. Although it was
possible to replicate the preceding results using the movement
epoch rather than the plan epoch, our interest in the commu-
nications prosthetic application led us to focus on plan activity.
However, in cases in which the microelectrode array is im-
planted in areas with well-tuned perimovement activity, its use
may be desirable. Optimized results when the ML target is
estimated immediately following the detection of the move-
ment epoch are given in Table 3. The latency of perimovement
activity is measured relative to target onset. The mean and SD
(jitter) of the behavioral reaction times, also measured relative
to target onset, are given for comparison purposes. Both simple
and extended HMMs detect a transition to the movement epoch
about 150 ms following the go cue. The beginning of the
physical movement occurs about 100 ms later. From the
standpoint of a neural prosthetic interface, this intriguing result
suggests that the prosthetic device could initiate movement at
the same rate as normal or perhaps even faster!

D I S C U S S I O N S

In prior neural prostheses, when different epochs of neural
activity have been taken into account, the boundaries of these
epochs have been typically specified by the experimenter. This
work builds on Achtman et al. (unpublished data) by develop-
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FIG. 7. Increasing the detection threshold results in increased latency of

detection and increased accuracy for the extended HMM. The solid line depicts
the trade-off of mean latency and accuracy for values of threshold from 0.5 to
1  10�8. In the extended HMM, excluding the first of each target’s plan
epoch states from the likelihood calculation further increases the latency of
epoch detection, of which the earliest plan-related neural activity modeled by
each of these states was ignored. However, the increased latency is accompa-
nied by increased accuracy. As the value of the threshold increases even
further, however, accuracy decreases as the likelihood fails to cross threshold
within 700 ms in some trials. The dashed line depicts the latency–accuracy
trade-off for increasing threshold when the plan epoch likelihood is calculated
using only the latter 9 states per target. The dotted line depicts the trade-off
when only 8 states per target are used. Note that performance equals or exceeds
the known-timing ML accuracy depicted by the cross. Left and right panels
depict results for monkeys G and H, respectively.
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FIG. 8. The simple HMM was trained using data corresponding to only 4 of
the 8 reach targets. The cumulative distribution of the latency of detection of
the plan epoch for a threshold of 0.99 is depicted. The black line represents the
cumulative distribution of epoch detection latency for test trials to the 4 targets
used for training. The gray line represents the cumulative distribution of
latency for test trials to the other 4 novel targets. Although there is a slight
increase in latency, the plan epoch appears to be easily detected in the case of
the novel targets. Left and right panels depict results for monkeys G and H,
respectively.

TABLE 2. Algorithm performance comparison

Algorithm Accuracy, % Monkey G (H) Latency, ms Parameters

Windowed ML (Known epoch) 91 (89) 350 (350) Window � 150–350 ms following target onset
FSM (Achtman et al., unpublished) 85 (83) 348 (334) Cplan � 14 (20)
HMM 90 (85) 339 (342) Delay � 140 ms (100 ms), Threshold � 1–1e-4 (1–1e-8)
Extended HMM 94 (90) 340 (332) Plan epoch states � 4–10 (4–10), Threshold � 0.9 (0.7)
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ing a rigorous two-phase decoding system in which the epoch
of neural activity is first detected, then the appropriate model is
applied to decode the intended target of movement. The HMM
approach allows baseline, plan, and perimovement epochs of
neural activity to be represented by series of unobserved states
coupled to a Poisson model of activity. In explicitly modeling
epochs of neural activity, this work contrasts quite significantly
from previous uses of HMMs to model cortical activity (Abeles
et al. 1995; Seidemann et al. 1996), in which hidden states
were used to represent patterns for which no a priori hypothesis
of the actual temporal structure could be made. In our work, we
begin with the assumption that there are three epochs of neural
activity that our model should represent and, for training, we
can segment our data using known temporal markers such as
experimental cues and behavioral data.

Compared with our simplest HMM, we found that using the
extended HMM for target decoding typically resulted in an
increase in accuracy of about 5%, allowing the performance of
our decoder to meet or exceed the level of known-timing ML.
This additional performance suggests that taking into account
the temporal characteristics of the patterns of neural activity
may be important for a good epoch detector. An alternate
approach would be to use a mixture of models of neural
activity with continuous valued state, such as in Yu et al.
(2006), for the various epochs coupled to a discrete latent
variable representing the epoch. Unfortunately, the training and
decoding for these types of models lack the simple closed
forms of the HMM. Similarly, we represented movement
intention and execution as being an uninterrupted process. In
reality, users might abort their intent or change their intended
targets during the plan epoch. Although a fully connected state
transition matrix would accommodate these sorts of dynamics,
accurate model learning would likely require significantly
more trials.

In general, the amount of neural activity detectable by a
chronically implanted cortical microelectrode array is initially
quite limited and decreases with time. As a result of this
limited information, there is a fundamental trade-off between
the flexibility (the range of potential movements) and accuracy
of a neural prosthesis interface. On the basis of this limited
information, we chose to operate in a regime of higher reli-
ability but lower flexibility—the regime of a fixed number of
discrete targets. Despite this choice, our activity-segmenting
algorithm appears to work even in the case of novel targets,
and thus there is potential to improve other existing systems
merely by coupling them with our algorithm. For example,
most existing continuous prosthesis decoding systems do not
specifically detect when movements should be made. Instead,
an external operator enables them during movement; thus the
performance of this type of system during nonmovement pe-

riods has yet to be quantified. Whether these current decoders
incur high error during nonmovement periods has yet to be
quantified. If these current decoders incur high error during
nonmovement periods, as our experience suggests, our HMM-
based scheme could be used as a high level controller, passing
control to the continuous decoder only when perimovement
activity is detected.

We have shown previously (Kemere et al. 2004b) that for
stereotyped movements, a model of canonical trajectories can
be coupled to an estimate of the intended target of movement
to generate a decoded trajectory. In addition, we have also
shown that an estimate of the target of movement generated
from plan activity can be used to improve the accuracy of a
trajectory decoded from perimovement activity (Kemere and
Meng 2005; Kemere et al. 2004a; Yu et al. 2007). An epoch
detector, such as that presented in this work, is required for
systems that seek to realize this performance increase.

We used the accuracy of the ensuing decoding to judge the
optimality of an epoch-detection threshold. An alternate ap-
proach would be to minimize latency while also minimizing
the number of premature or very late epoch detections, which
might correspond to finding the threshold level that minimized
the jitter or some other measure of the tightness of the epoch-
detection distribution. Interestingly, the minimum jitter we
were able to detect in transitions in neural activity, about 70
ms, is still much larger than the 20-ms jitter observed in
behavioral reaction times. Although this may merely be evi-
dence of suboptimality of our algorithm or an insufficiency of
neural data, it may also reflect something real in the neural
activity—that is, a greater variation in the length of time the
neural activity takes to converge from an unspecific baseline to
an appropriate plan for a particular target (Churchland et al.
2006b).

As discussed earlier, we have recently implemented this
algorithm in real time. Although a detailed discussion of the
performance achieved is outside the scope of this report, this
demonstration underscores the point that such a system is
indeed realizable. Further, our platform is easily extensible to
allow for integration of other algorithms, such as mixture
models that decode trajectories (Yu et al. 2007) or other epoch
and target estimation algorithms. Of course, natural move-
ments lacking some of the somewhat artificial characteristics of
our reaching task—enforced eye fixation and delay between
target onset and the go cue—may result in patterns of activity
that would potentially be more difficult to decode. Further-
more, the HMM approach might have difficulty with indecisive
or distracted movements, uncommon in our paradigm but
potentially a factor for functioning prostheses. A fully auton-
omous neural prosthesis would additionally require the ability
to make a series of movements without external triggering. We
could have implemented this feature by adding state transitions
from the perimovement states back to baseline. Alternatively,
the system could automatically return to the baseline state
following the selection of a target. Our segmented data set did
not permit us to compare the performance of either of these
approaches.

Finally, the HMM-based approach to finding transitions in
neural activity between different epochs of activity may have
utility beyond neural prosthesis interfaces. Prior work with
these models (Abeles et al. 1995) has, in fact, focused on data
in which neural activity was thought to oscillate between

TABLE 3. Decoding using perimovement activity

Algorithm Accuracy, %
Mean Latency,
ms (Jitter, ms) Threshold

Mean RT, ms
(Jitter, ms)

HMM
G 98 164 (114) 1–1e-8 244 (21)
H 98 160 (114) 1–1e-10 253 (21)

Extended HMM
G 98 125 (83) 1–1e-6 244 (21)
H 99 137 (81) 1–1e-6 253 (21)
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unobservable states. The desire to study problems in which
trial-by-trial evaluations of mental states are of interest (Yu
et al. 2006) will increase with increasing adoption of dense
multielectrode neural recordings. The technique we developed
in this work—using known trial parameters to ensure that the
hidden states of the HMM represent interpretable regimes—
should serve as a guide to investigators hoping to use these
techniques in the future.

A P P E N D I X : P A R A M E T E R E S T I M A T I O N F O R H M M

For this work, we use an iterative expectation–maximization (EM)
algorithm (Baum et al. 1970; Dempster et al. 1977; Rabiner 1989) to
estimate the parameters of our HMMs. Our HMM is described by
three parameters: � � {�, A, �}

�i � Pr �s0 � i�

Aij � Pr �st�1 � j � st � i�

�k,i:Pr �nt�k� � d � st � i	 �
exp���k,i��k,i

d

d!

For trial m, assume S(m) is the sequence of states that gave rise to the
neural activity, �(m) � n0:Tm

. Thus for the M trials in our training data,
we would like to find the parameters � � �*, which maximize the
log-likelihood

�� (parameters) � �
m�1

M

log �Pr ���m�, S�m�; �	�

However, because we cannot observe S(m) directly, we approximate
using our observations

log �Pr ���m�, S�m�; �	� � E �log �Pr �N�m�, S�m�; �	� � N�m�; ��

Since we also lack perfect knowledge of the parameters, �, we iterate,
using the current estimate of the parameters �̂ to calculate
E{log [Pr (N, S; �)] � N; �̂}, then finding the value of � � �* that
maximizes the expectation and repeating with �̂ � �*. It has been
shown (Baum et al. 1970; Dempster et al. 1977) that this iteration
results in increasing likelihoods, reaching a unique maximum if it
exists.

Thus each iteration of the EM algorithm involves two steps: 1) the
“expectation” (E) step, that is, computing the expected log-likelihood
function; and 2) the “maximization” (M) step; that is, find the value of
the parameters, �*, that maximize it. This APPENDIX describes the EM
algorithm applied to our particular HMM.

Expectation

The first step of the EM iteration is the E step. The goal of this step
is to efficiently calculate for all states i and j

Pr �st � i � n0:T� t � �0, . . . , T� (A1)

and

Pr �st � i, st�1 � j � n0:t� t � �0, . . ., �T � 1�� (A2)

respectively the probability of being in state i at time t and the
probability of being in state i at time t and state j at time (t � 1).
Importantly, notice that in both cases, these probabilities are condi-
tioned on all the neural activity (n0:T) from a particular trial. We can
calculate these densities efficiently with only two passes through the
data using the “Forward–Backward” algorithm. At each point in time,
we combine information received from time 0 forward to the present

[the forward density, �t(i) � Pr (n1:t, st � i)] with information
received from time T back to the present [the backward density,
�t(i) � Pr (nt�1:T, st � i)]. The product of the forward and backward
densities at time t is simply Pr (n0:T, st � i), which is proportional to
the expression in Eq. A1.

We define the state-dependent observation function for state i

bi�nt� � �
k�1

N

exp���k,i��k,i
nt�k�

1

nt�k�!

A recursive calculation is used for the forward density

�1�j� � �j bj�n1�

�t�1�j� � Pr �n1:t�1, st�1 � j; ��

� �
i�1

L

Pr �n1:t, st � i� Pr �st�1 � j � st � i� Pr �nt�1 � st�1 � j�

� � �
i�1

L

�t�i�Aij�bj�nt�1�

and the backward density

�T�i� � 1

�t�1�i� � Pr �nt:T, st�1 � i; ��

� �
j�1

L

Pr �nt�1:T, st � j� Pr �st � j � st�1 � u� Pr �nt � st � j�

� �
j�1

L

�t�j�Aijbj�nt�

As mentioned in the text, implementing the forward–backward recur-
sions as written would quickly result in numerical underflow (all
numbers tending toward zero). Thus it is critical to rescale at each
step. For the forward density, we simply normalize the values to sum
to one

�̂�t�1�i� � �
j�1

L

�̂t�j�Aijbi�nt�1�

ct � 1 �
1

�
i�1

L

�̂�t�1�i�

�̂t � 1�i� � ct�1�̂�t�1�i�

As described in Rabiner (1989), it is convenient to use the same
scaling factor for the reverse density

�̂�t�1�i� � �
j�1

L

�̂t�j�Aijbj�nt�

�̂t�1�i� � ct�1�̂�t�1�i�

Notice that, because of the normalization at each step, it is not
necessary to include the factorial term in the observation density bj(nt)
because it is common to all states. Additionally, to prevent large
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fluctuations when a spike is observed from a neuron whose firing rate
is very low, we enforce a minimum firing rate of 1 Hz.

Maximization

In the M step, we find the model parameters that best fit the latent
state probabilities calculated in the E step. Specifically, we wish to
find the parameters �*

�* � max
�

�
�

Pr �S � N; �̂� log �Pr �N, S; ��	 (A3)

Note that the sum is taken over all possible state sequences and that
Pr (� � N; �̂) is calculated during the E step. Furthermore, the initial
state probabilities, �i, and state transition probabilities, Aij, must be
found subject to the constraints

�
i

�i � 1 and �
j

Aij � 1

The maximizing values for the initial probabilities and state tran-
sitions (Rabiner 1989) are

�� i � �
m�1

M 1

Pm
� �̂1�i��̂1�i�	

�m�

and

Āij �

�
m�1

M 1

Pm
� �

t�1

Tm�1

�̂t�i�Aijbj�nt�1��̂t�1�j�	
�m�

�
m�1

M 1

Pm
��

t�1

Tm

�̂t�j��̂t�j�	
�m�

For the Poisson firing rates, the formula is

�� k,j �

�
m�1

M 1

Pm
� �

t�1

Tm�1

�̂t�j�nt�1�k��̂t�j�	
�m�

�
m�1

M 1

Pm
� �

t�1

Tm

�̂t�j��̂t�j�	
�m�

To determine model convergence, we use the log-likelihood of the
parameters, the log of the a posteriori probability of the entire training
data, ��(�*) � �m�1

M Pr [(n0:Tm
)(m); �*]. Notice that this can be

calculated using the forward density or the scaled forward density, as
shown in Rabiner (1989)

����*� � �
m�1

M

log �Pr �n0:Tm
; �*�	

� �
m�1

M

log ��
i�1

L

�Tm
�i��

� ��
m�1

M �
t�1

Tm

log �ct� 	 constant

We specified a criterion on the proportional change in this log-
likelihood: (new � original)/original: 10�3 for the simple HMM and
for the submodel training in the extended HMM, and 10�1 for the
primary training of the extended HMM.

In the case of the simple HMM, the proportional change in the
log-likelihood dropped to �10�3 after 1–2 iterations of EM, 10�4

after about 10 iterations, and 10�6 after about 30 iterations. The rate
of convergence depended on the number of baseline states; for a
simpler model with only one baseline state, the proportional change
reached 10�10 within 7 iterations of the EM algorithm. However,
extending learning beyond the first 1–2 iterations had little effect on
the subsequent detection or decoding. To test the effect of learning on
model parameters, we generated a simulated data set. We generated
Poisson random firing, where the firing rates were generated from
averages of our experimental data. We also used the trial timing of our
training data set to specify when the simulated neural activity should
switch between the three epochs (with the actual transition happening
100 ms following the target onset and go cue). Using the same training
initialization and learning procedure, we then evaluated convergence
of the HMM using 50 different simulated data sets. We found that
log-likelihood convergenced quickly, similar to the actual training
data. Furthermore, we examined how the learned firing rates changed
from one iteration to another. We found that the mean-square differ-
ence between EM-learned firing rates and those used to generate the
simulated data converged at about the same rate, reaching a final (but
of course nonzero) value within 1–2 iterations. Because neither our
simulation nor the actual data actually arise from a Markov process,
we did not evaluate the convergence of the state transition matrix.
Thus for the HMMs used in this work, in which the state-dependent
firing of the neurons can be closely initialized using training data, a
few iterations of the EM algorithm suffice to achieve a converged
model.
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Danóczy M, Hahnloser R. Efficient estimation of hidden state dynamics from
spike trains. In: Advances in Neural Information Processing Systems, edited
by Weiss Y, Schölkopf B, Platt J. Cambridge, MA: MIT Press, 2006, vol.
18, p. 227–234.

Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data
via the EM algorithm. J R Stat Soc B Method 39: 1–38, 1977.

Deppisch J, Pawelzik K, Geisel T. Uncovering the synchronization dynamics
from correlated neuronal activity quantifies assembly formation. Biol Cy-
bern 71: 387–399, 1994.

Donoghue JP. Connecting cortex to machines: recent advances in brain
interfaces. Nat Neurosci Suppl 5: 1085–1088, 2002.

Fetz EE. Real-time control of a robotic arm by neuronal ensembles [Com-
ment]. Nat Neurosci 2: 583–584, 1999.

Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT. On the relations
between the direction of two-dimensional arm movements and cell dis-
charge in primate motor cortex. J Neurosci 2: 1527–1537, 1982.

Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan
AH, Branner A, Chen D, Penn RD, Donoghue JP. Neuronal ensemble
control of prosthetic devices by a human with tetraplegia. Nature 442:
164–171, 2006.

Hudson N, Burdick J. Learning hybrid system models for supervisory
decoding of discrete state, with applications to the parietal reach region. In:
Proceedings of the 2007 CNE’07 3rd International IEEE/EMBS Conference
on Neural Engineering. Piscataway, NJ: IEEE, 2007, p. 587–592.

Kemere C, Meng TH. Optimal estimation of feed-forward-controlled linear
systems. In: Proceedings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing, Philadelphia, PA. Piscataway, NJ:
IEEE, 2005, vol. 5, p. 353–356.

Kemere C, Santhanam G, Yu BM, Ryu SI, Meng TH, Shenoy KV.
Model-based decoding of reaching movements for prosthetic systems. In:
Proceedings of the 26th Annual Conference of the IEEE/EMBS, San Fran-
cisco, CA. Piscataway, NJ: IEEE, 2004a, p. 4524–4528.

Kemere C, Shenoy KV, Meng TH. Model-based neural decoding of reaching
movements: a maximum likelihood approach. IEEE Trans Biomed Eng 51:
925–932, 2004b.

Kennedy PR, Bakay RA. Restoration of neural output from a paralyzed
patient by a direct brain connection. Neuroreport 9: 1707–1711, 1998.

Kennedy PR, Bakay RA, Moore MM, Adams K, Goldwaithe J. Direct
control of a computer from the human central nervous system. IEEE Trans
Rehabil Eng 8: 198–202, 2000.

Kipke DR, Vetter RJ, Williams JC, Hetke JF. Silicon-substrate intracortical
micro-electrode arrays for long-term recording of neuronal spike activity in
cerebral cortex. IEEE Trans Neural Syst Rehabil Eng 11: 151–155, 2003.

Miller EK, Rainer G. Neural ensemble states in prefrontal cortex identified
using a hidden Markov model with a modified EM algorithm. Neuralcom-
puting 32–33: 961–966, 2000.

Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA. Cog-
nitive control signals for neural prosthetics. Science 305: 258–262, 2004.

Nicolelis MA. Actions from thoughts. Nature 409: 403–407, 2001.
Nicolelis MA, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD,

Wise SP. Chronic, multisite, multielectrode recordings in macaque mon-
keys. Proc Natl Acad Sci USA 100: 11041–11046, 2003.

Rabiner L. A tutorial on hidden Markov models and selected applications in
speech recognition. Proc IEEE 77: 257–286, 1989.

Radons G, Becker JD, Dulfer B, Kruger J. Analysis, classification, and
coding of multielectrode spike trains with hidden Markov models. Biol
Cybern 71: 359–373, 1994.

Santhanam G, Ryu SI, Yu BM, Afshar A, Shenoy KV. A high-performance
brain-computer interface. Nature 442: 195–198, 2006.

Scott SH. Neuroscience: converting thoughts into action [Comment]. Nature
442: 141–142, 2006.

Seidemann E, Meilijson I, Abeles M, Bergman H, Vaadia E. Simulta-
neously recorded single units in the frontal cortex go through sequences of
discrete and stable states in monkeys performing a delayed localization task.
J Neurosci 16: 752–768, 1996.

Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP.
Instant neural control of a movement signal. Nature 416: 141–142, 2002.

Srinivasan L, Eden U, Mitter S, Brown E. General-purpose filter design for
neural prosthetic devices. J Neurophysiol 98: 2456–2475, 2007.

Suner S, Fellows MR, Vargas-Irwin C, Nakata GK, Donoghue JP. Reli-
ability of signals from a chronically implanted, silicon-based electrode array
in non-human primate primary motor cortex. IEEE Trans Neural Syst
Rehabil Eng 13: 524–541, 2005.

Taylor D, Helms-Tillery S, Schwartz A. Direct cortical control of 3D
neuroprosthetic devices. Science 296: 1829–1832, 2002.

Wu W, Black MJ, Mumford D, Gao Y, Bienenstock E, Donoghue JP.
Modeling and decoding motor cortical activity using a switching Kalman
filter. IEEE Trans Biomed Eng 51: 933–942, 2004.

Yu BM, Afshar A, Santhanam G, Ryu SI, Shenoy KV, Sahani M.
Extracting dynamical structure embedded in neural activity. In: Advances in
Neural Information Processing Systems, edited by Weiss Y, Schölkopf B,
Platt J. Cambridge, MA: MIT Press, 2006, vol. 18, p. 1545–1552.

Yu BM, Kemere C, Santhanam G, Afshar A, Ryu SI, Meng TH, Sahani M,
Shenoy KV. Mixture of trajectory models for neural decoding of goal-
directed movements. J Neurophysiol 97: 3763–3780, 2007.

Innovative Methodology

2452 KEMERE, SANTHANAM, YU, AFSHAR, RYU, MENG, AND SHENOY

J Neurophysiol • VOL 100 • OCTOBER 2008 • www.jn.org

 at R
ice U

niversity on A
ugust 11, 2012

http://jn.physiology.org/
D

ow
nloaded from

 

http://jn.physiology.org/

